Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study
Published in PLOS Digital Health, 2024
Recommended citation: Edward De, Thijs Becker, Lorin Werthen-Brabants, Pieter Dewulf, Dimitrios Iliadis, Cathérine Dekeyser, Guy Laureys, Bart Van, Veronica Popescu, Tom Dhaene, Dirk Deschrijver, Willem Waegeman, Bernard De, Michiel Stock, Dana Horakova, Francesco Patti, Guillermo Izquierdo, Sara Eichau, Marc Girard, Alexandre Prat, Alessandra Lugaresi, Pierre Grammond, Tomas Kalincik, Raed Alroughani, Francois Grand’Maison, Olga Skibina, Murat Terzi, Jeannette Lechner-Scott, Oliver Gerlach, Samia Khoury, Elisabetta Cartechini, Vincent Van, Maria Sà, Bianca Weinstock-Guttman, Yolanda Blanco, Radek Ampapa, Daniele Spitaleri, Claudio Solaro, Davide Maimone, Aysun Soysal, Gerardo Iuliano, Riadh Gouider, Tamara Castillo-Triviño, José Sánchez-Menoyo, Guy Laureys, Anneke Walt, Jiwon Oh, Eduardo Aguera-Morales, Ayse Altintas, Abdullah Al-Asmi, Koen Gans, Yara Fragoso, Tunde Csepany, Suzanne Hodgkinson, Norma Deri, Talal Al-Harbi, Bruce Taylor, Orla Gray, Patrice Lalive, Csilla Rozsa, Chris McGuigan, Allan Kermode, Angel Sempere, Simu Mihaela, Magdolna Simo, Todd Hardy, Danny Decoo, Stella Hughes, Nikolaos Grigoriadis, Attila Sas, Norbert Vella, Yves Moreau, Liesbet Peeters, "Machine-learning-based prediction of disability progression in multiple sclerosis: An observational, international, multi-center study." PLOS Digital Health, 2024.
Download Paper